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Transient analysis of isothermal gas flow in pipeline network
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Abstract

Conventional methods for transient analysis of pipeline network are normally applied to find the numerical solution of the two partial
differential equations (continuity and momentum), which are complex and cumbersome. Following the success of the steady state analysis
of pipeline network, this study extends the usage of the electrical analogy method by combining resistance with the theoretically derived
models of capacitance and inductance. This method leads to a set of first-order ordinary differential equations for transient analysis of
isothermal gas flows in pipeline network. Solving the proposed first-order ordinary differential equation is definitely much simpler than
solving the set of partial differential equations. The computational advantages of the present method are demonstrated by comparing them
with the conventional methods when applied to a range of pipe network simulation examples. ©2000 Elsevier Science S.A. All rights
reserved.
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1. Introduction

The analysis of flows and pressure drops in piping systems
has been studied by many workers and is usually based upon
the consideration of steady state conditions. However, the
steady state analysis of pipeline network is less applicable,
in the design of actual transmission systems, as unsteady
(transient) state is more often encountered.

The analysis of unsteady state is much more difficult than
that of steady state. The reason for this difficulty is that
the unsteady state system is typified by variables which are
functions of time and space (or position). In contrast, for
steady state analysis, the variable in the system is only a
function of space. The introduction of the concept of time
variable adds on a new dimension to the mathematical model
of the transient flow in a pipe distribution system, and results
in computational difficulty. The mathematical model of pipe
distribution system is derived from the two conservation
equations (mass and momentum), which have the following
forms [8]:

∂ρ

∂t
+ ∂(ρv)

∂x
= 0 (1a)

∂(ρv)

∂t
+ ∂(ρv2)

∂x
+ ∂P

∂x
+ 2ρv2

[ϕf

D

]
+ ρg sinθ = 0 (1b)
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In which ρ is the fluid density,v(x, t) the fluid velocity,
P(x, t) is the pressure,ϕf is Fanning friction factor,D is the
pipe diameter,g is the gravitational acceleration constant,
andθ is the angle between the horizon and the longitudinal
direction of the pipe.

Many algorithms such as finite difference methods or
method of characteristic (MOC) have been used to solve the
above partial differential equations [1,8,13]. These methods
have been shown to be efficient in solving unsteady flow
equations. However, it is not the objective of the present
study to follow the conventional route for the analysis of
transient flow in pipe distribution system, but to apply elec-
trical analogies to simulate the same transient flow problem.

2. Electrical analogy

The analogy between fluid network and electrical network
has been successfully applied in the simulation of steady
state pipeline networks by many workers [2,3,11]. From the
electrical circuit theory, the three basic elements which relate
to voltage and current are viz. resistance, capacitance and
inductance. Based on the analogy of voltage and current in
an electrical circuit network with that of pressure drop and
flow in the fluid network, all the three basic elements should
also be present in the fluid distribution systems [5–7,10].

The resistance effect of a pipeline, which has been stud-
ied in the steady state analysis of pipeline network, is due to
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several factors, such as the roughness and geometric proper-
ties of a pipe, the viscosity of the fluid and the flow rate. The
capacitance effect of a pipeline can be directly attributed to
the compressibility of the fluid. The inductance effect of a
pipeline is believed to be due to the kinetic energy of the
fluid [12].

3. Derivation of models for basic elements

The models of resistance and capacitance have been in-
troduced in a previous work [10]. However, it is intended
that the models of the three basic elements be derived from
Eqs. (1a) and (1b) directly, such that the formulation of the
models is explicated theoretically.

Due to pressure change involved in a transient process,
the control volume may be compressed or expanded, so the
Continuity equation, that is Eq. (1a), can be changed to the
following form [1]:

∂P

∂t
+ v

∂P

∂x
+ ρa2 ∂v

∂x
= 0 (2)

wherea is the acoustical wave velocity.
The Momentum equation, that is Eq. (1b), may be rear-

ranged by multiplyingA, the cross-sectional area of pipe to
give

∂(ρvA)

∂t
+ ∂(ρvAv)

∂x
+ ∂(PA)

∂x

+ 2ρAv2
[ϕf

D

]
+ ρAg sinθ = 0

The first two terms of the above may be expanded as follows:

∂(ρvA)

∂t
+ ∂(ρvAv)

∂x
= v

∂(ρA)

∂t
+ ρA

∂v

∂t
+ v

∂(ρvA)

∂x

+ρvA
∂(v)

∂x

or

∂(ρvA)

∂t
+ ∂(ρvAv)

∂x
= v

[
∂(ρA)

∂t
+ ∂(ρvA)

∂x

]

+ρA
∂v

∂t
+ ρvA

∂(v)

∂x

From the Continuity equation Eq. (1a), the term in bracket
vanishes; therefore, the Momentum equation becomes

ρ
∂(vA)

∂t
+ ρv

∂(vA)

∂x
+ ∂(PA)

∂x
+ 2ρAv2

[ϕf

D

]
+ ρAg sinθ = 0 (3)

In most engineering applications, the convective acceleration
terms,v [∂v/∂x] ; v [∂P/∂x] and the slope term are very
small compared to the other terms in the above equations
and may be neglected [1]. After dropping these terms from
Eqs. (2) and (3), the following are obtained:

∂P

∂t
+ ρa2 ∂v

∂x
= 0 (4)

∂(ρv)

∂t
+ ∂P

∂x
+ 2ρv2

[ϕf

D

]
= 0 (5)

The dischargeQ may be written as

Q = vA (6)

Substituting Eq. (6) into Eqs. (4) and (5) gives

∂P

∂t
+ ρa2

A

∂Q

∂x
= 0 (7)

∂Q

∂t
+ A

ρ

∂P

∂x
+ 2ϕf Q|Q|

DA
= 0 (8)

Rearranging Eqs. (7) and (8), transient flow through the
horizontal pipe can be represented by the following set of
equations:

∂Q

∂x
= − A

ρa2

∂P

∂t
(9)

∂P

∂x
= − ρ

A

∂Q

∂t
− 2ϕf ρQ|Q|

DA2
(10)

Taking into account that

Mass flow rate= ρQ = ρnQn

where the subscript n refers to quantities at standard condi-
tions of pressurePn ∼= 0.1 MPa and temperatureTn = 288 K.

The governing equations become

∂Qn

∂x
= − A

ρna2

∂P

∂t
(11)

∂P

∂x
= −ρn

A

∂Qn

∂t
− 2ϕf ρnQn|Q|

DA2
(12)

Based on Eq. (11), we obtain

Qn(x, t) − Qn(x + 1x, t)

= QC = −∂Qn

∂x
1x =

[
A1x

ρna2

] [
∂P

∂t

]
(13)

whereQC is the change in flow rate in a pipe dependent on
compressibility of the fluid.

Therefore, for the consideration of capacitance effect in
a pipeline network, the relationship between pressure and
flow rate with capacitance can be made analogous to voltage
and current relationship across an electric capacitor in the
following form:

Nodal approach J = G
dV

dt
(14)

Mesh approach V = 1

G

∫
J dt (15)

whereG is the capacitance, reflecting the capacitance effect
in a pipeline. Comparing Eq. (14) with Eq. (13), the capac-
itance has the following form:

G = A1x

ρna2
= Vp

ρna2
(16)

whereVp is the volume within the pipe.
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For gas distributing system under isothermal conditions,
we can write the equation of state in the form [8]

a2 = P

ρ
= zRgT

MW
(17)

Substituting Eq. (17) into Eq. (16), we get

G = Vp MW

ρnzRgT
(18)

Similarly, from Eq. (12), we obtain

P(x, t) − P(x + 1x, t) = −1P = −∂P

∂x
1x = ρn1x

A

∂Qn

∂t

+2ϕf ρnQn|Q|1x

DA2
(19)

We assume

−1PL = ρn1x

A

∂Qn

∂t
(20)

and

−1PR = 2ϕf ρnQn|Q|1x

DA2
(21)

where (−1PL) is the pressure drop required to accelerate a
given mass of fluid [6], which is due to inductance effect and
is proportional to the rate of change of flow; and (−1PR)
is the pressure drop due to frictional resistance to flow. It
is noted that Eq. (21) is the same as the Darcy–Weisbach
formula. Therefore, the total pressure drop of a pipe is the
sum of the pressure drop due to resistance effect and the
pressure drop due to inductance effect across the pipe.

For the inductance effect in a pipeline network, based on
Eq. (20) and the analogy between electrical and hydraulic
flow, the analogous relationships for inductance relating to
pressure drop and flow rate have the following forms, which
are analogous to voltage and current relationship across an
electric inductor:

Mesh approach V = L
dJ

dt
(22)

Nodal approach J = 1

L

∫
V dt (23)

whereL is the inductance, reflecting the inductance effect
in a pipe. Comparing Eq. (22) with Eq. (20), the inductance
has the following form:

L = ρn1x

A
(24)

The mathematical representation of the resistance effect in
a pipeline network has been employed in the steady state
analysis. The adaptability of this model has already been
demonstrated by many workers [2,3,10,11]. It can be ex-
pressed either in the forms of impedanceZ or admittanceY,
which correspond to the mesh or nodal approach. The rela-
tionship between the resistance with the pressure drop and

flow rate is analogous to the Ohm’s law and can be repre-
sented by the following equations:

Mesh approach V = ZJ (25)

Nodal approach J = YV (26)

The mathematical model for resistance in a pipeline network
depends on the various equations describing the friction fac-
tor relationship between pressure drop and flow rate. Wey-
mouth equation has been used in the previous work [10] on
Osiadacz’s sample networks [8]. Other equations used in the
present study are listed as follows [8]:

Lacey’s equation — (for the pressure range of 0–75 mbar
gauge):

ϕf = 0.0044

[
1 + 12

0.276D

]
(27a)

The Polyflo equation — (for the pressure range of
0.75–7.0 bar gauge):√

1

ϕf
= 5.338Re0.076η (27b)

The Panhandle ‘A’ equation — (for the pressure range above
7.0 bar gauge):√

1

ϕf
= 6.872Re0.073η (27c)

whereη is the efficiency factor accounting for the additional
frictional or drag losses other than losses due to viscous
forces.

4. Derivation of equations for the transformation
approach

In order to derive the mathematical model for transient
flow analysis, some of the fundamental assumptions used in
the conventional methods are also applied. These assump-
tions are (i) one-dimensional and isothermal flow, and (ii)
applying the steady state friction factor equation to transient
flow [1,8].

As mentioned above, the change of flow rate across a
pipe with time is due to compressibility of the fluid, i.e.
the capacitance effect. The pressure drop of a pipe is the
sum of the pressure drop due to resistance effect and the
pressure drop due to inductance effect across the pipe. A
typical branch of fluid network with transient flow can be
represented as an electrical circuit and be visualised in Fig. 1.
The resistance and inductance are proposed to be connected
in series, and the capacitance and resistance are proposed to
be connected in parallel.

Based on Fig. 1, the following relationships can be drawn:

V = V1 + V2 (28)
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Fig. 1. Composite branch of a network.

V1 = E + e1 (29)

V2 = e2 (30)

J = I + i (31)

J = J1 + J2 (32)

For the nodal approach [14]

J b
1 = Y bbV1b (33)

J b
2 = GbbdV1b

dt
(34)

Based on Eq. (22),

V2b = Lbb
dJ b

dt
(35)

Applying the transformation theory [14],

J s = As
·bJ

b = As
·b(J

b
1 + J b

2 ) = As
·b

[
Y bbV1b + GbbdV1b

dt

]
(36)

V2s = C·b
s LbbC

b
·s

dJ s

dt
(37)

Substituting

V1b = A·s
bV1s (38)

into Eq. (36), the following equation is obtained:

J s = As
·b

[
Y bbA·s

bV1s + GbbA·s
b

dV1s

dt

]

= As
·bY

bbA·s
bV1s + As

·bG
bbA·s

b
dV1s

dt
(39)

When Eqs. (39) and (37) are extended to open path and
closed path frameworks, they become[
J o

J c

]
=

[
Ao

·b
Ac

·b

]
Y bb[A·o

b |A·c
b ]

[
V1o

V1c

]

+
[
Ao

·b
Ac

·b

]
Gbb[A·o

b |A·c
b ]

[
dV1o/dt

dV1c/dt

]
(40)

[
V2o

V2c

]
=

[
C·b

o

C·b
c

]
Lbb[C

b
·o|Cb

·c]
[

dJ o/dt

dJ c/dt

]
(41)

As

V1o = Eo + e1o = C·b
o Eb + e1o (42)

V1c = Ec = C·b
c Eb (43)

for an invariant pressure sourceEb, we obtain the following
relationships:

dV1o

dt
= de1o

dt
(44)

dV1c

dt
= 0 (45)

Expanding Eqs. (40) and (41), and incorporating Eqs. (44)
and (45), we have

J o = Ao
·bY

bbA·o
b (C·b

o Eb + e1o) + Ao
·bY

bbA·c
b C·b

c Eb

+Ao
·bG

bbA·o
b

de1o

dt
(46)

J c = Ac
·bY

bbA·o
b (C·b

o Eb + e1o) + Ac
·bY

bbA·c
b C·b

c Eb

+Ac
·bG

bbA·o
b

de1o

dt
(47)

e2o = C·b
o LbbC

b
·o

dJ o

dt
+ C·b

o LbbC
b
·c

dJ c

dt
(48)

Rearranging Eq. (46), we have

de1o

dt
= [Ao

·bG
bbA·o

b ]−1[J o − Ao
·bY

bbA·o
b (C·b

o Eb + e1o)

+Ao
·bY

bbA·c
b C·b

c Eb] (49)

Eqs. (47) to (49) are the governing equations for transient
pipe flow system with a constant pressure source; and they
are a set of first-order ordinary differential equations. Hence,
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the transient pipe flow problem which is ordinarily governed
by the set of two partial differential equations can now be
solved by a set of first-order ordinary differential equations
which is much easier to handle. Nevertheless, these equa-
tions can not be solved analytically owing to the complicated
relationships involved in the network problem.

For a network with known topology, tensorsAo
·b,

A·o
b , Ac

·b, A
·c
b , Cb·o, Cb·o, Cb·c, andC·b

c and inductance are in-
dependent of time and can be determined easily; while the
boundary condition of admittance and capacitance can be
calculated based on the results of steady state analysis.
Therefore, the dynamic response ofe1o can be determined
through the solution of a series of ordinary differential equa-
tions as Eq. (49). Whene1o is found,Jc can be calculated
from Eq. (47). Then,e2o is calculated from Eq. (48). Using
eo andJc, the dynamic change of branch flow, branch pres-
sure drop and nodal pressure of network at any given time
can be found through the application of the transformation
techniques.

5. Computational scheme

Once the topology of the pipeline network is ascertained,
the steady state analysis of pipeline network can be carried
out to find the branch flow rate and nodal pressure, which
are then used as the initial value to solve the ordinary differ-
ential equation. The steady state analysis of a pipe network
can be based either on the mesh method or its dualistic nodal
method. Once the steady state analysis is completed, the
transient calculation is carried out by using the general solu-
tion method such as the fourth-order Runge–Kutta method
for the first-order ordinary differential equations. The de-
tailed computation scheme is outlined in Fig. 2. The com-
puter program is written in MicrosoftFORTRAN and runs
on a Pentium/75 PC.

6. Sample networks

The mathematical model derived in the present study was
tested on three simple gas networks, two of which have been
analysed by Osiadacz [8] and one by London Research Sta-
tion (LRS) [4]. The first sample network is a straight pipeline
(l = 105 m) with a uniform diameter of 0.6 m. The upstream
pressure is maintained at a constant level of 5 MPa. The
flow rate is depicted in Fig. 3. The operating temperature is
278 K; the density of the fluid is 0.73 kg m−3; and the spe-
cific gravity of the fluid is 0.6. For the purpose of analysing,
the pipeline is cut into five segments. Thus, the capacitance
of each segment is five times the capacitance of the pipe.
Osiadacz’s result is presented in Fig. 4.

The second example is a simple network with three nodes
and three branches forming one mesh as shown in Fig. 5.
The physical data are shown in Table 1.

Fig. 2. Computational flow chart.

Fig. 3. Change of flow with time (boundary condition).

Node 1 is the pressure source with a constant pressure of
5 MPa. The loads at Nodes 2 and 3 are known functions of
time, which vary according to the curves depicted in Fig. 6.
In this example, each pipe is cut into four segments. Hence,
the capacitance of each segment is equal to the capacitance
of the pipe multiplied by 4 [15].
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Fig. 4. Change of pressure at the outlet for Sample Network 1.

Fig. 5. Sample Network 2.

Table 1
Pipe data of the second sample networka

Pipe From To Diameter (m) Length (m)

1 1 3 0.6 80000
2 1 2 0.6 90000
3 2 3 0.6 100000

aρ = 0.7165 kg m−3; S= 0.6; T= 278 K; tmax= 86,400 s.

The last sample network is a straight pipe having a uni-
form diameter. This sample network was used by LRS in
demonstrating the versatility of their programPAN. Ini-
tially, the pipe was in a steady state; the demand then in-
creased by 50% in a step change and was held constant
thereafter. The pressure at the inlet,P1, was held constant,
while the pressure at the outlet,P2, fell to a new steady state
value. In this case, each pipe is cut into four segments and
the capacitance of each segment is four times the capaci-
tance of the pipe. The analysis was carried out for five dif-
ferent pressure ranges which corresponded to typical pres-
sure range for low, medium and high. The operating condi-
tions are listed in Table 2. The LRS results are depicted in
Figs. 9–13.

Fig. 6. Changes of load at Nodes 2 and 3 for Sample Network 2.

Table 2
Pipe data of the third sample network

Length Diameter Initial flow Inlet

(mile) (in.) rate (MSCFH) pressure

LRS 1 80 18 1500 350 psig
LRS 2 20 12 800 180 psig
LRS 3 6 14 300 25 psig
LRS 4 3 14 80 2 psig
LRS 5 0.6 4 4 20 in. water gauge

The compressibility factor in this study is determined by
using the following correlation:

z = 1

1 + αPave
(50)

whereα is obtained from linear interpolation of the constant
taken from Gas engineers’ Handbook [9] andPave is the
average pressure of each pipe section.

7. Results and discussion

The dynamic pressure response at the outlet of the first
sample network as simulated by the derived model is pre-
sented in Fig. 4. The computation time spent for solving the
examples ranges from approximately 10 s to 5 min, depend-
ing on the different time steps used.

Simulation results of the second sample network using
the present model is compared with the results from the
literature. These are shown in Figs. 7 and 8.

It can be seen that the results obtained by using the present
method are comparable with those in the literature. The de-
viation is less than 9% for the first example and 1% for the
second example. When the last sample network was anal-
ysed, it was found that the average simulated pressure re-
sponse was higher than the LRS result by around an average
of 10% (the maximum error is around 27% for the case of
lowest pressure). This result shows that the response was
slower, due to the high value of capacitance. Upon further
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Fig. 7. The variation of pressure at Node 2.

Fig. 8. The variation of pressure at Node 3.

investigation, it was found that, when the temperature was
decreased, the capacitance became larger and the response
slowed down. As most pipes were buried underground and
the pipe wall temperature subjected to daily temperature
change, the assumption of isothermal condition made in the
derivation of Eq. (18) might not satisfy the LRS conditions.
In order to avoid a more complicated model of considering
the conservation of energy, an efficiency factor is adopted in
the present study to consider the deviation from the assump-
tion of isothermal flow condition. After numerous trials, a
factor of 0.65 was selected based on the first case of LRS
result (P1 = 350 psig). It was found that the same factor of
0.65 would fit the other four cases of LRS with a maximum
error of 7%. The results are depicted in Figs. 9–13.

Convergence is normally a common problem in the anal-
ysis of pipeline network. However, in this present study, it-
eration process is only required in the part of steady state
analysis; and the solution of transient analysis can be ob-
tained without any convergence difficulty. Moreover, the
steady state analysis was carried out using the robust trans-
formation method [3,11], and hence, convergence problem
was manageable.

Fig. 9. Comparison of simulated pressure with the LRS result
(P1 = 350 psig).

Fig. 10. Comparison of simulated pressure with the LRS result
(P1 = 180 psig).

Fig. 11. Comparison of simulated pressure with the LRS result
(P1 = 25 psig).
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Fig. 12. Comparison of simulated pressure with the LRS result
(P1 = 2 psig).

Fig. 13. Comparison of simulated pressure with the LRS result (P1 = 20
i.w.g.).

The present study also investigated the effect of space and
time discretization on the accuracy of solution. This is done
by comparing the simulation results of the second sample
network when all pipes were cut into four and eight equal
parts. It is found that discretization of pipe section does not
affect the precision of simulation result for the pipe network
examined. It is also found that the variation of time step has
negligible effect on the simulation result. On the other hand,
both space and time discretization have noticeable effect on
the computation effort needed, i.e. the finer the space or time
steps, the more is the computation time required. For a node
with a sudden change of high demand, a smaller time space
is recommended.

The inductance effect on the solution of gas transient flow
is also investigated. Simulation results of pipe flow with the
inductance effect considered were compared to that when
inductance effect was neglected. It is found that the effect
of inductance which corresponds to kinetic energy of gas is
negligible on the simulation results for the gas pipe networks
examined compared to the resistance and capacitance ef-

fects. Hence, when the boundary conditions of a gas pipeline
network do not change rapidly or the capacity of the pipe is
relatively large, the effect of inductance can be neglected .
Nevertheless, further study on the inductance effect for hy-
draulic transient analysis is recommended.

8. Conclusion

A new mathematical model based on electrical analogy
and transformation theory is developed for transient analy-
sis of isothermal gas flow in pipe networks. The transient
behaviour of a pipe, conventionally taking the form of a
set of second-order partial differential equations, can be ex-
pressed by a set of first-order ordinary differential equations
using the new model. The solutions computed using the new
method are compatible with those using the conventional
methods. The new method is simple, straight forward and
without convergence problem. It is easy to implement on a
small personal computer. Comparing with the conventional
methods, this new method shows a promising feature in sav-
ing computational efforts and may be employed as a pow-
erful means for pipe network design and control.

9. Nomenclature

A transformation tensor or cross-sectional area
C matrix or transformation tensor used in the

mesh approach
D diameter of a pipe
E covariant tensor for pressure source across a

branch or path
e covariant tensor for pressure drop across a branch

or path
G contravariant tensor for capacitance used in

the nodal approach
I contravariant tensor for flow due to external

input–output on a branch or path
i contravariant tensor for flow due to other cause

on a branch or path
J contravariant tensor for total flow on a

branch or path
L contravariant tensor for inductance used in

the mesh approach
l length of a pipe
MW molecular weight of fluid
1P pressure drop across a pipe
P1, P2 pressure at the nodes
Pave average pressure of a pipe
Qn volumetric flow rate of fluid at standard state
Re Reynolds number
Rg gas constant
S specific gravity of gas
T absolute temperature (K)
V contravariant tensor for pressure drop due to

impedance, whereV= E+ e
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VP volume within pipe
v fluid velocity
Y contravariant tensor for admittance used in

the nodal approach
Z contravariant tensor for impedance used in

the mesh approach
z compressibility factor
η efficiency factor
ϕf Fanning friction factor
ρ density of fluid

9.1. Index symbols

b index used in tensor form, indicating that
the tensor is in primitive framework

c index used in tensor form, indicating that
the tensor is in closed path framework

o index used in tensor form, indicating that
the tensor is in open path framework

s index used in tensor form, indicating that
the tensor is in orthogonal framework
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